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Abstract: The paper investigates a system with rapidly oscillating coefficients and with a rapidly
decreasing kernel of the integral operator. Previously, only differential problems of this type were
studied in which the integral term was absent. The presence of an integral operator significantly
affects the development of an algorithm for asymptotic solutions, for the implementation of which it is
necessary to take into account essentially singularities generated by the rapidly decreasing spectral
value of the kernel of the integral operator. In addition, resonances can arise in the problem under
consideration (i.e., the case can be realized when an integer linear combination of the eigenvalues of
the rapidly oscillating coefficient coincides with the points of the spectrum of the limiting operator
over the entire considered time interval), as well as the case where the eigenvalue of the rapidly
oscillating coefficient coincides with the points spectrum of the limiting operator. This case generates
a multiple spectrum of the original singularly perturbed integro-differential system. A similar problem
was previously considered in the case of a simple spectrum. More complex cases of resonance (for
example, point resonance) require more careful analysis and are not considered in this article.
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1. Introduction Feschenko-Shkil-Nikolenko splitting method
[1,2,3] and the Lomov regularization method

Various applied problems related to dynamic [4.5,6,7]. The first method was applied only to

stability and the properties of media with a differential ~systems without an integral
periodic structure lead to differential equations operator, while the second allows one to study
with rapidly oscillating coefficients. The differential problems in the presence of an
presence of high-frequency terms in them integral  term (see, for  example,
prevents an efficient numerical calculation of [8,9,10,11,12,13,14,15,16,17,18]). ~ In  this
approximate  solutions.  Therefore,  such article, Lomov's regularization method is
equations are first analyzed from the point of generalized to previously unexplored integro-
view of asymptotic methods in order to obtain differential equations with rapidly oscillating
the most efficient initial approximation, and coefficients and rapidly decreasing kernels of
then the well-known methods of numerical the form

integration are app!ied. Thfe most' famqus g% _At)z— gg(t)cos@ B(t)z-
methods of asymptotic analysis equations with t £

rapidly  oscillating coefficients are the
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I e '[ m K(t,s)z(s,e)ds=h(t), (1)

Z(to,8)=z Stelt,, T],
z={z,2,},h®) = {h(O,h, D)}, &) >0,
u(®>0(vtet,,T]).g(t) is the scalar function,

where

At) and B(t) are (2x2)-matrices, moreover
0 1
A(t) = [—a)z ® OJ’ B'(t)>0 is the frequency of

the rapidly oscillating cosine, z° = {210 , 25 },g >0

is a small parameter. It is precisely such a
. 0 0
system in the case p(t)= 27/(t),B(t)=[1 OJ

and of the absence of an integral term that was
considered in [4,5,6,7]. The functions
A(t)=—io(t), 4, (t)=+iw(t)form the spectrum
A(t), the function
A, (t)=p(t) characterizes the rapid change in

of the limit operator

the kernel of the integral operator, and the
functions A,(t)=-ig'(t) and A (t)=+ipg'(t)are
associated with the presence of a rapidly
oscillating cosine in system (1). Previously,
such systems have not been considered. This
paper is devoted to the generalization of the
Lomov’s regularization method [4] to systems
of the type (1).

Problem (1) will be considered under the
following conditions:

Do(t),u(t),B(t)eC”([t,. T].R),
g(t)e([t,.T].C"). h(t)eC([t,.T].C*),
B(t)eC*([t,.T].C*?),

K(t;s)eC”({t, <s<t<T},C™?);

2) w(t)=p'(t)vtelt,,T] (ie.

A (0)=A4(t).A4(1)=4(t));

3) the relations
(mA(1) =0m A1) = 4, (1), i <{1.2.3

m=(m,,m,,m;)

for
all
Im|=m, +m, +m, >2(m; >0, =1,2,3) or are not
fulfilled for any te[t,T], or are fulfilled
identically on the whole segment [t,,T].

multi-indices with

Here we denoted:
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A(t)=(4(1). 4 (). 4 (1)),
(mA@)=3 mA4 ()

It is clear that under condition 3) resonant
multi-indices are exhausted by the following

sets:
T, ={my(m,A(t))=0Jm|>2,vte[t,.T]},
T, ={m{m.A(t))= 4 (t)Jm| 2 2. vt e[t,,T]},
ji=1.3.

1.1 Preliminary considerations
t .ot

ij B(6)do +lj B(6)do
t t

&

Functions v,=e 0 v,=e 0 ,

participating in a rapidly oscillating cosine
satisfy differential equations

d —ip'(t)v,, 4—+|,B( Vs,

d
j(tO)_ )]
By adding them to system (1), we obtain the
problem

g%—Al(t)v 90 (v +v.0,)8, (V-
o 0)do 1
‘e I o K, (t,5)v(s,£)ds = H (1), @)

to
v(t,, &)=V’ telt,,T],
where the notations are introduced:
v={z,2,,v;,v,}, H(t)={h(t),h,(t),0,0},

a5 wio)20(% 3
AR A SR (4!

K(t, S) 02 —ip(ty) +iB(t)
K, (t,s)= ,0,=€ ¢ ,0,=€ ¢
02 02

Thus, if 2={z,(t,£),z,
system (1), then v={z(t.e),

(t,g)} is a solution of the

Z,(t,e),v(te),
v,(t,)}is a solution to a weakly nonlinear

all

singularities in the solutions of both systems are
described by the spectrum of the matrix A (t).
This matrix will be called the matrix of the
extended limit operator of the problem (1). It
would be possible to carry out an asymptotic

system (1.), and vice versa. Hence,
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analysis of the problem (1*) instead of the

analysis of problem (1), but when developing
the  corresponding  algorithm  of  the
regularization method, this will lead to complex
calculations. Therefore, we do not go over to

the system (1*), but consider directly the
system (1).

Previously, we considered the case of a
simple spectrum of the matrix A (t), ie., the

case w(t)=f'(t)vVte[t,,T]. Here we consider a
more complicated case «(t)=p'(t)vte[t,,T].
In this case, the spectrum of the matrix A (t)

will be multiple and, according to [19] (section
3.6), the algorithm of the regularization method
will change significantly.

2. Regularization of the problem (1)

We denote, as above, by o,=0,(¢)

~Lhlt)

independent on t the quantities o,=e * ",

Ly (to)

o,=e ¢ ", and rewrite system (1) in the form

g——A(t)z j e’ J.M)dg K(t,s)z(s,&)ds —

‘j[ ( ij (0)
-— yid g)de +; p'(0)de
—3@ e ° o +e

=h(t), z(t,,e)=2°, te[t,,T]. (2)
We introduce regularizing variables (see [4])
(t _
e)dez"’l_(),j=1,3 3)
&
and instead of problem (2) we consider the
problem

1 ¢t
T :;J‘to;tj(

07z < 1074 .
EE-FZ//LJ- (t)g — A(t)z —

i1 j

g( )(e o, +€ JZ)B(t)Z—

_J‘eJSWWK(t,s)z(s,‘”(s),g)ds: @)
=h(1).2(t.7.8) |y o= 2t elt,, T,

for the function z—z(t,r,g), where it is

indicated (according to 3)):
t=(1,,7,.73). ¥ =(v,.¥,.¥; ). It is clear that if
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Z=1(t,7,¢) is the solution to problem (4), then

v (t)

the vector function z=17 [t, ,gJ 1S an exact

solution to problem (2), therefore, the problem
(4) is expansion of the problem (2). However, it
cannot be considered completely regularized,
since the integral term

Jy=1J (Z(t,f,g) s r:w )/s):

j (t,5) z(s y(s) ,&)ds

has not been regularized in 1t. To regularize it,
we introduce a class M_, asymptotically
invariant with respect to the operator JZ (see
[4]; p. 62]). We first consider the space of

vector functions z(t,z), representable by sums

Zzta

+ Z Zm(t,G)e(m’T),Zi(t,O'),Zm(t,O')E

2<|m<N,

eC”([t,.T].C?).i=0.3,2<|m|<N,, )
where the asterisk * above the sum sign
indicates that in it the summation for |m|>2

(tTO'—Z

occurs only over nonresonant multi-indices
m=(m,m,,m,), ie. over meU?zol“i. Note that
in (5) the degree of the polynomial with respect

to exponentials e depends on the element z.
In addition, the elements of space U depend on
constant constants o, =o,(¢) and o, =o0,(¢),
which do not affect the development of the
algorithm described  below, therefore,
henceforth, in the notation of element (5) of this
space U, we omit the dependence on
o= (01,02) for brevity . We show that the class

M, =U]_,
respect to the operator J.

The image of the operator J on the element
(5) of the space U has the form (e, =(0,0,1)):

t
IJ
¢ =| A @do
r):j gds
t

i1s asymptotically invariant with

/g

K(t,s)z,(s)ds+

1

7-'1 %4(0)do

J‘A3(€)d6
K(t,s)z(s)e ™  ds+

+Ze

t
i=1~ 0
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1

t S
. lj@(a)de ;J‘t (m.A(0))do

+ z g’ K(t,s)z"(s)e ~°

2<|m|<N, o

1o
=1 e’s K(t,5)z,(s)ds +

ds=

)

A3(«9)d0
+e ‘0 j K (t,s)z,(s)ds +

I (4(6)-15(6))d6

1 t
2 7.[ 15(6)d6
& t t
0 ds +

J K (es)

i=1 0

ﬂ3(9)d6 . éj‘s(m—eyﬂ(ﬁ))dﬁ
+ Z e o jt K(t,s)z"(s)e ds.
2<|mj<N, 0
Integrating by parts, we have
1 ¢t
3,(t8)= [ K(ts)z (s)et """
0
:gJ.t K(t,S)ZO(S)deﬂ:A}(a)dg _
b =A(s)

t
1
2| 0)do
s) egLﬂs

ds=

s=t

. t gK(t,S)ZO(S) eéj:,g(a)dad
s -A(s)
_ ({ K(tt,)z, (to)eﬂ;ﬁgw)de _K(tb)z (t)}r
2 (1) 4 (t)
o[ 0 K(t,5)2,(s) ) 1. (a0
+3L0(£—%(S) Je ds

Continuing this process further, we obtain the
decomposition

,j',13(9)d9
1.0 = 6 (1 (Ko@), o
(17 (K(t.s)z, (S)))Szt]’
oo L oL Oy,

YL A

Next, apply the same operation to the integrals:

Jiit,e)= eEM jK(t,s)zi(s)x

1

- (21( )-45(0))do
t
xe 0
i ©)do K
el K92
' 4(S)—4,(5)

ds =
NGO
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= geﬂ;%(mdl9 {M if.;(% (0)-15(0))do

_ geé[{%(e)da J‘t K (t,S) Zm (S) ; éi(mfeya(a))da

—ge'o
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s=t

4 (8) = 4(s)

—5I 0 K(t,9)z(s) LO
as/i(s) 4(8)

d‘

xe 0 ds=
ij:xiw»de
—Z( e 1(17 (Kt S)Zi(s)))szte 0
(1 (K(L9)z(s),., el oy
|°: 1 v _ 1 g v-l
CAG)-AG) T A()-A(s)es
1=1,2;

&
xe 0 ds=

o (m—e,,A(s))
L 10000 ll(m—e3,/1(9))m9
! K(9)2 "(s) -]

(m—e.4(s))
=) [ﬁw}eﬁiwwww

|S=t
s=t,

ds]=

K(tt) (t) .[zg(s)de}_
(m e, (1))

Volume 20, 2021



WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2021.20.9

é‘l'[;%(e)de t| 0 K(t’s)zm(s)
= L S moae) "

iJ‘l (m-e;.4(6))de

xe 0 =

—Z( e (L (K (65)27(5)))_ >

s=t

—(I;m(K(t,s)z”‘(s)))

0 1

I _—9
- (m—e,,A(s))
1 0
IV — IV 1 2
o (m—e3,/1(s))8s e
Here it is taken into account that since

(m—e,,A(s))#0, since by definition of space

_ s
s—to

eéj";zg (€)d0:|

Im[<N,.

U, multi-indices meI',. This means that the

image of the operator J on the element (5) of
the space U is represented as a series

1 t
;I BOdo

Jz(t,r)=e " .L K(t.s)z,(s)ds+
0
Lot
, £ e
+zgv+1 (l(‘)’(K(t,S)Zo(S)))s:toe 0 —
V=0

(15 (K(ts)z,(9)))., |+

+ZZ( e m[( ‘(K(ts)z, (S)))s:tx

i=1 v=0

lj 2%(0)do
t

xe 0 _

1

;J': 1 (6)d6

~(11(K(t.s)z(s))) e ™™ +

s=t

£ Sy e (. (K sz (),

2<mEN, v=0 =t

éj.: (m.(6))do
xe 0 -
1 t
;J. 25(0)d6
(IV (K(t,s)zm(s)))s:to t
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It is easy to show (see, for example, [19],
pages 291-294) that this series converges
asymptotically for &—+0 (uniformly in
te[t,,T]). This means that the class M, is

asymptotically invariant (as &—>+0) with
respect to the operator J.

We introduce the operators R, :U —U,

acting on each element z(t,z)eU of the form
(5) according to the law:

&4Lﬂ:@

t

K(t,s)z,(s)ds, (6,)

f

K(ts)z,(s)),.
(|§(K $)z,(s))) 1+
)7,(9)), .
(1 (Ks)z (6),.,
S K)o

(1 (K2 (E), €
Rz(t) =115 (K(t)2(5)), € -
(15 (K (ts)z,(s)), 1+
+§(—1)”[(I((K ts)z(s))) €' -

(1 (K(L9)2(5)),, e+
3 (ko) ¢
~(15n (K (t5)2"(5)))
Let now Z(t,7,¢) be an arbitrary continuous
function in  (t,7)e[t,,T]x{r:Rer; <0,j=1,3}

with asymptotic expansion

e’ —
)

e+

(6))

(6v+l )

e?].

S:to

Z(t,r,€)=i¢9kzk (t,r),zk (t,r)eU, (7)

k=0
converging as ¢—>+0  (uniformly in
(t,r)e[tO,T]x{r:RETj SO,j=1,_3}). Then the

image JzZ (t,r,g) of this function is decomposed
into an asymptotic series

zg Iz, (t,7)=

Jth'g
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o0

ZZM

=0 s=0
This equallty is the basis for introducing an
extension of the operator J on series of the
form (7):

) |T:u/(t)/e .

~Ztrg (ZgztrJ
def X2

=3 YR

r=0 s=0

(8)

Although the operator J is formally defined,
its usefulness is obvious, since in practice it is
usual to construct the N -th approximation of
the asymptotic solution of problem (2), in
which only N -th partial sums of the series (7)
will take part, which have not formal, but true
meaning. Now we can write down a problem
that is completely regularized with respect to
the original problem (2)

5—+Z/1

t T, T & T
—8%(91014-920'2)82—\]22 9)

Z_AbZI-

=h(t),Z(t,7,8) |- =tg.0=0 " =2’ SLelty,T],

where the operator has the form (8).

3. lterative problems and their
solvability in the space U . Solution of
the first iterative problem

Substituting the series (7) into (9) and
equating the coefficients for the same powers of
&, we obtain the following iterative problems:

Zz —J—A(t)z z,= 10,)
=h(t),zo(t0,0)=z°;
Lz, (t,r)=—%+?(e”q +er2c72)><
xB(t)z, + R z,,7/(t,,0)=0;
Lz, (t,z-)=—%+%(er1

xB(t)z, + Rz, +R,z,, Z,

(10,)

o e )x (10,)
2
(t0,0)=0;
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sz(t,7)=—agkt‘ g(t)(e G]+eTZO'2)

xB(t)z,, +RZ, +..+ Rz, (10,)
Zy (tO,O):(),k >1.
Each of the iterative problem (10,) can be

written as
Lz(t,7) ngl, ——A(t)z R,Z= an
=H(t,7), (tO,O)—z
where H (t,7)=H, (t)+ .7Hi(t)eri N
+Z;‘m‘£NHH (t)e e™) is a well-known vector-

function of the space U, z is a well-known
constant vector of a complex space C?, and the
operator R, has the form (see (6,))

=R (0 TA 06+ 3 (06 |-

i=1 2<m<N,
=e" toK (t,s)z;(s)ds.

In the future we need the Z,(t)-eigenvectors of

the matrix A(t):

o, (t):(_ial,( )) 2:()= (Hal)(t)j’

as well as A, (t)-eigenvectors of the matrix

A (1):

() "ol
These vectors form a biorthogonal system, i.e.
Lk=1j, .
(0 0) {12
We introduce the scalar product (for each
te(t,,T]) in the space U:

> 20

3
<z,w>=<z,(t)+ >z (t)e +

2<|m|<N,
3 * e
0+ Sw (e + > wh(t)e™) > =
i=1 2<m<N,,,
def 3

= (20(1).w, () + 32( (1) (1)) +

*

+ > (2"().wn (),

2S‘m‘$min(Nz ,NW)

Volume 20, 2021



WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2021.20.9

where we denote by (*,*) the ordinary scalar

product in a complex space °. We prove the
following statement.
Theorem 1. Let conditions 1) and 2) are

satisfied and the right-hand side
3 *
H(t,r)=Hy(t)+ Y H;(t)e + > H"(t)e™
i=1 2<|mj<Ny

of the system (11) belongs to the space U. Then
for the solvability of system (11) in U it is
necessary and sufficient that the identities
<H(t,7),z (t)e* >=0,k=1,2,vte[t,, T] (12)

hold.

Proof. We will determine the solution to
system (11) in the form of an element (5) of the
space U :

*

P

2m|<Ny,

Zz 2" (t)e™). (13)
Substituting (13) into the system (11), we have

Y41 -A®]z (e +

i=1

ttK(t,s)z3(s)ds =

0
3 *
)+ > H (t)eT+ D H"(t)el
i=1 2<ml<Ny
Equating here separately the free terms and

coefficients at the same exponents, we obtain
the following systems of equations:

—A(t)z,(t) = H, (1). (14,)
[4(O1=-A(t)]z (t)=H,(1).i=1.2; (14)
I_ﬂ3 t)l At)st()_
" (14,)
(t’S)Zs(S)dS_ ( )’
[(m, (t))' A(t)|z2" () =H" (1),
(14,)

2s|m|sNH,m¢UFj.
j=0

Due to the invertibility of the matrix A(t),
(14,) solution
z,(t)=—A"(t)H,(t). Since A (t)=pu(t) isa
real function, and the eigenvalues of the matrix
A(t) the

system has a

are purely imaginary, matrix
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2, (t)1 = A(t) is invertible and therefore system

(14,) can be written as

= [ ([A01-A®] K (ts)x

1 (15)

s)ds+[ 4, (1)1 - AM)] H, (1)
Due to the smoothness of the kernel
(2 1-A0] 'K (ts)) and  the
heterogeneity [ 4 (t) —A(t)]_1 H,(t) this

Volterra integral system has a unique solution
z,(t)eC*([t,.T].C*).

Systems (14,)and (14,) are solvable in the
space C~ ([tO,T] 0 2) if and only if the
identities (H, (t), % (t))=0vte[t,, T],i=1,2

hold. It is easy to see that these identities
coincide with the identities (12). Further, since

multi-indices mg szol" i in the
(14,), then(m,ﬂ(t)) =4 (t).i=1,2, so these

systems are uniquely solvable in the space
cC” ([tO,T], Cz) in the form of functions

m _ 1 ym
2" () =[(m.A(t))1 = A(t)| H" (1),
0<|m|<N,,.

Thus, condition (12) is necessary and sufficient
for the solvability of system (11) in space U.
The theorem is proved.

Remark 1. If identity (12) holds, then under
conditions 1) and 2) system (11) has (see (15) —
(16)) the followmg solution in space U:

ZZ e+ Z )™ =

2<m[<Ny

t)ek+h,(t)e, (t)e" + (17)

systems

(16)

tr—z

+h,, (t)¢, (t)eT2 +2,(t)e” +

*

> Pn (),

2<|mj<Ny,
where ¢, (t)eC” ([tO,T], Cl) are arbitrary
functions, k=1,2,7, (t) =—A"H, ),z (t) is

the solution of the integral system (15) and the
notation is introduced:
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_(HM.20) o (H0).2(0)
0= 0-an 0" z;a)—ﬁ'(t)’

P( )s[ (1)1 —A(t ] H; ( (18)

P"(t) = (m. A(t))1 - A(t )}lem-

4. The unique solvability of the general
iterative problem in the space U . The
remainder term theorem

We proceed to the description of the
conditions for the unique solvability of system
(11) in the space U. Along with problem (11),
we consider the system

Lw(t,7)= —%+%t)(er‘o] +erzo'2)><

xB(t)z+Rz+Q(t,7),
where Z=Z(t,r) is the solution (18) of the

(19)

system (11), Q(t,r) €U is the known function

of the space U . The right-hand side of this
system:

G(t,r)z-%+¥(eﬁ
xB(t)z+Rz +Q(t )=

6 3
__a[z )+ zlz, (t)e’
2

+¥(erlq +e”202)B(t){zo )+ (t)e’ +

i=1

)
o, te*o, |x

Z 2" (t)e!™) ]+

2<m<N,

kS

+ > 7" (t)e(m”)J+ Rz+Q(t,7)

2s\m\sNz

may not belong to the space U, if
z=z(t,r)eU. Since —%, Rz Q(t,7)eU,

then this fact needs to be checked for the
function

E-ISSN: 2224-2880
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g t T T
=% B(1)2, (t)(e"0, +e20, ) +
+z ggt) B(1)z(1)(e" 0, +67 0, )+
+w(erlo_l+erzo.2)8(t) Z Zm(t)e(m,r).

2 2<m[<Ny
Function Z(t,r)eEU,

exponents
p1" 2 — glm7) |

since it has resonant

rl+(m

m=(1.1.0)> & i (ml +1=m,,m, = 0)’

T

g2 (™) (m,+1=m,m, =0),
right-hand side

G(t,r)=Z (t,r)—%+ Rz+Q(t,7)of system

therefore, the

(19) also does not belong to space U. Then,
according to the well-known theory (see [5], p.
234), it is  necessary to  embed

AG (t, r) -G (t, r) the right-hand side G (t, r)

of the system (19) in the space U . This
operation is defined as follows. Let the function

G(t.7)= Z\:\:owm (t)e!

exponentials, i.e. G (t,r) has the form

contain resonant

3
G(t,7) =W, (t) + D W (t)e" +
i=1
3 N
PP
=0 \mj\=2:mlel"j
N

+ Z w" (t)e(m”).

\m\zZ,m¢mj ,j=03

w" (t)e(’“j’” +

Then
é(t, 7) =W, (t)+ iwi (t)e’ +

+23: ZN: w™ (t)e” +

j=0 |mj\:2:mjel"j

N
C 3w (e
\m\:z,m¢mj,j:@

Therefore, the embedding operation acts only
on the resonant exponentials and replaces them

with a unit or exponents el of the first
dimension according to the rule:

(e(m,f) |m€l_0 )A —e’ = 1,(e(m,r) |mel"j )A —e7,j=1.3.
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We now turn to the proof of the following
statement.

Theorem 2. Suppose that conditions 1) and
2) are satisfied and the right-hand side

3
H(t,7)=H,(t)+ > H,(t)e" +
i=1
+ > H"(t)e™)eu
2<m[<Ny
of the system (11) satisfies condition (12). Then
the problem (11) under additional conditions

<G(t,7), z (t)e* >=0vte[t,, T],k=1,2, (20)

where
Q(L7)=Q, (1)+ X, Q (1)
+ z:s\m\sNQQm (t) e(m’f)

is the well-known vector function of the space
U, is uniquely solvable in U.

Proof. Since the right-hand side of system
(11) satisfies condition (12), this system has a
solution in the space U in the form (17), where
o (t)eC” ([tO,T],Cl),k =1,2 are arbitrary

functions so far. We obey (18) the initial

e+

condition 2(t),0)=z We obtain
> a(t)9(t )=z, where is indicated
=7 + A" (t,)H,y(t,) -
A (t)1-At) ] Hy(t)
REXSPATION
A(t)=A () "
C(Ha(t). 4 (1)) *
at)- 2, 2"(t).
R
Multiplying scalarly the equality

3 a(t)a(t)=2 by z(t,) and taking into
account the biorthogonality of the systems

{a(t)} and 2 (V)

a (t)=(z. 2z (t)).k=1,2.

Now we subordinate the solution (17) to the
orthogonality condition (20). We write in more
detail the right-hand side G(t,7) of system (19):

Zak

+h, () e, (t)e" +h, (t)g (t)e™ +

we find the values

G(t,7) ———[z t)ek +
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+h, (t)e, (t)e +h, (t)e (t)e? +

Z(0e*+ Y P(t)el

2<\m\<NH

Zak Je™ +
+h, ()@, (t)e™ +h, (t)e (t)e? +
z()e+ 3, P"(H)e™1+Q(tr).

2<m[<Ny

+R, [z

Putting this function into the space U, we will
have

é(t,r)=——[z Z“k )e™ +

+h, ()0, (1)e" =fhﬂ() o (1) +
>, P(t)e" 1+

2<m[<N

O e0, +e0 B (1) (1) +

3, (Do (e +, (e (e +

k=1

+h,, (e, (t)e? +z,(t)e™ +

Zak

+h,, (t) e (t)e? +z,(t)e” +

+z,(t)e” +

> ()

2<|m[<Ny,

+R [z, ( Jek +h, (t)e, (t)e" +

+ Y P (1)e™]4Q(tr) -
2<\m\<NH
1z, Zak -

+h, (t)e, (t)e™ +h, () (t)e™ +

*

+z,(t)e% + > P"(t)e!

2<m|<Ny
t 27
4@50)@ o () (t)+

+ezTlo_lhlz (t)¢2 (t) +
+e” 2oy, (D) (1) +e 0,0, () g, (1) +

m,r)]+
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e o, ('[)qz)l (t) +
+e Hzoqhz]( )(pl( ) +Tzo'az( )(p2 (t)+
110 h (V) e, () +eT B0z, (1) +

+e2'B 0,1, (t) +el 0,2, (t) +e? 0,2, (t)) +

5

+%g(t)B(t) P(t)" (e"””3o-1 +e" Mo, )}A +

2<m<Ny,
Zak Jek +h,(t)e, (t)e" +
+h,, (), (t)e™? +z,(t)e™ +

+ > P"(1)e™1+Q(t.7).

2<m[<Ny

+R [z

The embedding operation acts only on resonant
exponentials,  leaving  the  coefficients
unchanged at these exponents. Given that the
expression

R [z, (t

)+ Zak

+h,, (t) e (t)e™ +z,(t)e” +

Jek +h,(t)e,(t)e" +

>, Pr(1)e™]

2<m|<Nyy
linearly depends on ¢ (t) and o,(t) (see the
formula (6,), we conclude that, after the
embedding operation, the function é(t,r) will
linearly depend on scalar functions ¢, (t) and
a, (t). that
conditions (20), scalar multiplication by vector
i (t)e™,
exponentials e, k=

Taking into account under

functions containing only

1,2, it is necessary to keep
in the expression G(t,z) only terms with

exponents €' and e?. Then condition (20)

takes the form
<——(Zak t)e™ +h,(t)e, (t)e" +
+h, (), (t)e72)+

NS W (e (t),a ()t) [ +
‘m1‘=2:mlefl
4 W (o (U (1)) 62 +

2|—9.m2
‘m ‘—2.m el
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+Q (t)e" +Q,(t)e?, x (t)ek >=0,

vtelt, T].k=1,2,
where the functions w™ (al (t),c, (t),t),j =1,2,
depend on «,(t) and «,(t) in a linear way (see
in (**)the underlined terms in and the formula

(6,)). Performing scalar multiplication here, we

obtain linear ordinary differential equations
with respect to the functions ¢ (t).k=1,2,
involved in the solution (18) of system (11).
Attaching the initial conditions
a, (t,)=(z.. 2 (t,)).k =1,2,calculated earlier to
them, we find uniquely functions e« (t),and,
therefore, construct a solution (17) of the
problem (19) in the space U in a unique way.
The theorem is proved.

As mentioned above, the right-hand
sides of iterative problems (10«) (with their
consistent solution) may not belong to the space
U. Then, according to [4] (p. 234), the right-
hand sides of these problems must be embedded
into U, according to the above rule. As a result,
we obtain the following problems:

Z;L ——A(t)z _
(100)
:h(t),zo(t0,0)=z°;
Lz, (t,r)=[@(e’lol+e’202 B zo} +
2 ; (10)
z
Rz, ——2~, z(t,,0)=0;
+ IZO 8’[ ( )
LZZ(t,T):{@(e”GI+e720'z)B(t)Zl} + .
2 (102)
iRz +Rz, - 4 (t,,0)=0;
141 240 ot > =0\ ?
sz(t,r)=[@(erlq+e’202)B(t)Zk1} o
2 (10x)

+Rz, +...+ Rz,

0z, _
BT

(images of linear operators % and R, do not

,0)=0,k>1,

need to be embedded in space U, since these
operators act from U to U). Such a
replacement will not affect the construction of
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an asymptotic solution to the original problem
(1) (or its equivalent problem (2)), so on the

v (t)
S
(10<) will coincide with the series of problems
(10«) (see [4], pp. 234-235].

Applying Theorems 1 and 2 to iterative
problems (10x), we find their solutions uniquely

narrowing = the series of problems

in space U and construct series (7). As in [4],
we prove the following statement.

Theorem 3. Let conditions 1) -2) be
satisfied for system (2). Then, for
£€(0,&,](g, >0 is sufficiently small) system (2)
has a unique solutionz(t,e)eC'([0,T],C?); at
the same time there is an estimate

12(t,8) = 2, ) lleor,<Cne" N =0,1,2,...,

where z,, (t) is the restriction on = YO o
&

the N -th partial sum of the series (7) (with
coefficients z,(t,z)eU, satisfying the iterative

problems (10¢)) and the constant c, >0 does
not depend on ¢ at £e(0,5,].

5. Construction of a solution to the
first iterative problem

Using Theorem 1, we try to find a solution to
the first iterative problem (100). Since the right-

hand side h(t) of the system (100) satisfies

condition (12), this system (according to (17))
has a solution in the space U in the form

7, (t,7)=2" +Za e ()e*, (1)
o’ (t)eC” ([tO,T],C )are arbitrary
k=1,2,2" (t)=—A" (t)h(t).

Subordinating (21) to the initial condition
z,(t,,0)=2", we have

where

functions,

2
0) t0)+k2a§°) (t)o (L) =2" =
=1

=3 (t)a () =2 + A (t)h(t,). 22

k=1
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Multiplying this equality scalarly z,(t,) and
taking into account the biorthogonality of the
systems {¢, (t)}and { Zi (t)}, we find the values

1 _
o (t0)=§(z° + A7 (t,)h(t). i (1)) .k =1.2.
For a complete calculation of the functions
a’ (t), we proceed to the next iterative
problem (R)]). Substituting the solution (21) of

the system (10,) into it, we arrive at the
following system:

d 0 2 0 7,
Lz, (t, T)__azg )(t)—zcIt @ (t) g (t)e™ +

here we used the expression (6,) for Rz(t,7)

and took into account that when z(t,7)=1z,(t,7)

in the sum (6, ) only terms with e, e and e

remain). We calculate

M = [g()(e o, +e 02) (t)x

)
x(zgm (1) 3" (O, (1) H

=%g(t)B(t)[e"
+e" 2o, (t) g, (1) +e2 0,2z, (1) +
+e12 0,0, (1), (1) +e 20,0, (), (V)] =
= 9()B)I ai2, () + o (D (1) +
+o,a, (), (t)+e2 0,2, (t)+
+o,0, () () +e 20y, () g, (1)].

( )+e lolal ('[)go1

Volume 20, 2021



WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2021.20.9

Since e7"? =1, then after

embedding takes the form
2
d

d 0 0 7,
Lz, (t,7)= m 7 >(t)—za(a£ () (t)e™ +

k=1

KA K()E() |

system (23)

A0 A(t)
+2 9BV, (1) + €01 (1) (1) +
+oi (0 (1) +€202, (1)+
40,0, (1)1 (1) +€ 20005 (1), (0] +

2
2
j=1

4 (1)
_(K (tt)a” (t)e, (tO))‘

4 ()

This system is solvable in the space U if and
only if the conditions of orthogonality are
satisfied:

2

<_Z (?t (ak ( )

k=1

{( )“SO) (t)e; (t))erj B

A ()" +29(1)B(1)[e" o1,

+e2T10]a1 (t)(p1 (t)+oa, (), (t)+
+620,2, (1) + 0,0, (V) (1) +€™ 20,0, (1) @, (1)]+

+i(K(t,t)ai‘°) (e (1)) .

Lz (0e1)y=0,j=1,2.
- 21(t) € ZJ()e > J

Performing scalar multiplication here,
obtain an  inhomogeneous  system
decomposing differential equations:

2
(00 m0)l" 0+

at _(¢1 (t)’ll

ATEE

(t)+

we
of

() )+
+29(1)0 (B(1)2,(1). (1) =0,

Adding the initial conditions (22) to this
system, we find uniquely functions o " (1),

k=1,2, and, therefore, uniquely calculate the
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solution (21) of the problem (10,) in the space

U. Moreover, the main term of the asymptotic
behavior of the solution to problem (2) has the

form
X ljt 2y (0)d0
£Jt
z,(t)= 7\ (t)+ Zaﬁo) () (t)e ™

k=1
where the functions a'” (t,)satisfy problem

(22), (24), 2\ (t)=-A"(t)h(t).
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